Kerr Newman Metric

English Version
Benutzeravatar
Yukterez
Administrator
Beiträge: 274
Registriert: Mi 21. Okt 2015, 02:16

Kerr Newman Metric

Beitragvon Yukterez » Do 12. Apr 2018, 06:28

Bild
Kerr-Newman, second order differential equations of motion for a charged particle and photons. Animations by Simon Tyran, Vienna (Yukterez)
Bild This is the english version.   Bild Deutschsprachige Version auf kerr.newman.yukterez.net und Yukipedia.
Bild

Bild  ←
Accretion disk around a spinning and charged BH with a=0.95, ℧=0.3, ri=isco, ra=10, viewpoint=89°. Earth surface at r=1.01r+.    
Bild

Bild  ←
Kretschmann scalar, cartesian projektion. The areas around the poles are curved negatively, and those around the equator positively.    
Bild

Bild  ←
Magnetic (left) and electric (right) field lines, cartesian projektion, view=90° (edge on), plot range=±5.    
Bild

Bild  ←
Retrograde orbit of a charged particle (q=1) around a BH with spin & charge a=√¾ & ℧=⅓. v0 & i0: local initial velocity & inclination  Bild

Bild  ←
Prograde orbit of a neutral testparticle around a spinning and electrically charged black hole with spin a=0.9 and charge ℧=0.4  Bild

Bild  ←
Prograde orbit of a negatively charged testparticle around a spiining and positively charged black hole with the same parameters as above  Bild

Bild  ←
Nonequatorial and retrograde photon orbit around a spinning (a=½) and charged (℧=½) black hole, constant Boyer Lindquist radius    Bild

Bild  ←
Polar photon orbit around a spinning (a=0.5) and charged (℧=0.75) black hole, constant Boyer Lindquist radius    
Bild

Bild  ←
Polar orbit (Lz=0) of a positively charged testpaticle (q=⅓) around a positively charged and spinning black hole (℧=a=0.7)  
Bild

Bild  ←
Plunge orbit of a negative particle (q=-⅓), BH like above. The nonpolar axial velocity for q<0 is positive for Lz=0 due to electric force.   Bild

Bild  ←
Free fall of a neutral testparticle around a rotating and charged naked singularity with spin a=1.5 and electric charge ℧=0.4  
Bild

Bild  ←
Geodesic orbit around a naked Kerr Newman ringsingularity with the same spin and charge parameters as in the last example    Bild

Bild  ←
Nonequatorial and retrograde photon orbit around a naked singularity spinning with a=0.9 and charged with ℧=0.9    
Bild

Bild  ←
Retrograde photon orbit around a naked singularity (a=0.99, ℧=0.99). Local equatorial inclination angle: -2.5rad=-143.23945°    Bild

Bild  ←
Stationary photon orbit (E=0) around a ringsingularity (a=½, ℧=1). Except at r=1, θ=90° v framedrag is <c everywhere, therefore no ergospheres.    Bild

Bild  ←
Equatorial retrograde photon orbit, singularity at r=0→R=√(r²+a²)=a=½. Ergoring (violet) at r=1, turning points at r=0.8 and r=1.3484    Bild

Bild  ←
Orbit of a negatively charged particle inside a positively charged Reissner Nordström black hole (also see Dokuchaev, Fig. 1)    Bild
Bild
Bild

Line element in Boyer Lindquist coordinates, metric signature (+,-,-,-):

Bild

Shorthand terms:

Bild

with the spin parameter â=Jc/G/M or in dimensionless units a=â/M, the specific electric charge Ω=·√(K/G) and the dimensionless charge ℧=Ω/M. Here we use the units G=M=c=K==1 with lengths in GM/c² and times in GM/c³. The relation between the mass-equivalent of the total energy and the irreducible mass Mirr is

Bild

Effective mass:

Bild

For testparticles with mass μ=-1, for photons μ=0. The specific charge of the test particle is q. Transformation rule for co- and contravariant indices (superscripted letters are not powers but indices):

Bild

Co- and contravariant metric:

Bild

Electromagnetic potential:

Bild

Covariant electromagnetic tensor:

Bild

Contravariant Maxwell-tensor:

Bild

Magnetic field lines:

Bild

Electric field lines:

Bild

with the term

Bild

With the Christoffel symbols:

Bild

the second proper time derivatives of the coordinates are:

Bild

Equations of motion:

Bild

Bild

Bild

Bild

Canonical 4-momentum, local 3-velocity and 1st proper time derivatives:

Bild

From the line element:

Bild

we get the total time dilation of a neutral particle:

Bild

Total time dilation of a charged particle:

Bild

Relation between the first time derivatives and the covariant momentum components:

Bild

Bild

Relation between the first time derivatives and the local three-velocity components:

Bild     Bild

Bild

with the contracted electromagnetic potential

Bild

The radial effective potential which defines the turning points at its zero roots is

Bild

and the latitudinal potential

Bild

with the parameter

Bild

For the 3-velocity relative to a local ZAMO we take E and solve for v:

Bild

or divide the gravitational time dilation by the total time dilation to get the inverse of the Gamma factor:

Bild

Radial escape velocity for a neutral particle:

Bild

For the escape velocity of a charged particle with zero orbital angular momentum we set E=1 and solve for v:

Bild

1. Constant of motion: Total energy E=-pt

Bild

2. Constant of motion: axial angular momentum Lz=+pφ

Bild

3. Constant of motion: Carter's constant

Bild

with the coaxial component of the angular momentum, which itself is not a constant:

Bild

Radial momentum component:

Bild

The azimuthal and latitudinal impact parameters are

Bild

Gravitative time dilatation of a corotating neutral ZAMO, infinite at the horizon:

Bild

Time dilation of a stationary particle, infinite at the ergosphere:

Bild

Frame-dragging angular velocity observed at infinity:

Bild

Local frame-dragging velocity relative to the fixed stars (c at the ergosphere):

Bild

with the relation

Bild

Axial and coaxial radius of gyration:

Bild

Axial and coaxial circumference:

Bild

The radii of the equatorial photon orbits are given implicitly by:

Bild

The innermost stable orbit (ISCO) of a neutral particle is given by:

Bild

Radial coordinates of the horizons and ergospheres:

Bild

Cartesian projection:

Bild

r in relation to x,y,z:

Bild

Cartesian radius:

Bild

Cartesian latitude:

Bild

Hawking temperature (with surface gravity κ⁺):

Bild
Bild
Bild

Transformation rule from Boyer Lindquist to Doran Raindrop:

Bild

Relative to a local ZAMO the river of space has the negative radial escape velocity:

Bild

Metric tensor in Doran Raindrop coordinates, covariant:

Bild

Contravariant metric tensor:

Bild

Electromagnetic vector potential:

Bild

Covariant Maxwell-tensor:

Bild

Contravariant electromagnetic tensor:

Bild

Total velocity relative to a local raindrop:

Bild

Radial local velocity:

Bild

Latitudinal local velocity:

Bild

Longitudinal local velocity:

Bild

Coordinate time differential:

Bild

Bild

Bild

More details: this way, comparison Boyer Lindquist with Raindrop Doran (animation and plots): click, other coordinates: geodesics.yukterez.net, view from the inside of a black hole: click
Bild
Bild

Horizons and ergospheres in pseudospherical (r,θ,φ) and cartesian (x,y,z) coordinates:

Bild

Simulator code: click here, other coordinates: click here
Bild
images and animations by Simon Tyran, Vienna (Yukterez) - reuse permitted under the Creative Commons License CC BY-SA 4.0
Bild
by Simon Tyran, Vienna @ youtube || rumble || odysee || minds || wikipedia || stackexchange || License: CC-BY 4 ▣ If images don't load: [ctrl]+[F5]Bild

Zurück zu „Yukterez Notepad“

Wer ist online?

Mitglieder in diesem Forum: 0 Mitglieder und 7 Gäste