Field Equations & Geodesics

English Version
Benutzeravatar
Yukterez
Administrator
Beiträge: 274
Registriert: Mi 21. Okt 2015, 02:16

Field Equations & Geodesics

Beitragvon Yukterez » Sa 15. Feb 2020, 19:15

Bild

Bild This is the english version.   Bild Deutschsprachige Version auf geodesics.yukterez.net
Bild

● Field equation and geodesic solver:
Bild

Code: Alles auswählen

(* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *)
(*  Mathematica Syntax | EINSTEIN-MAXWELL TENSOR+GEODESIC SOLVER | geodesics.yukterez.net *)
(* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *)

ClearAll["Local`*"]; LaunchKernels[4];
smp[y_]:=Simplify[y, Reals];
list[y_]:=y[[1]]==y[[2]];
rplc[y_]:=(((((((y/.t->t[τ])/.r->r[τ])/.θ->θ[τ])/.φ->φ[τ])/.Derivative[1][t[τ]]->
t'[τ])/.Derivative[1][r[τ]]->r'[τ])/.Derivative[1][θ[τ]]->θ'[τ])/.Derivative[1][φ[τ]]->φ'[τ]

                                                      (* kovariante metrische Komponenten *)
g11=gtt=-((-Δ+ж a^2 Sin[θ]^2)/(Σ χ^2));
g22=grr=-Σ/Δ;
g33=gθθ=-Σ/ж;
g44=gφφ=-((ж σ^2 Sin[θ]^2-a^2 Δ Sin[θ]^4)/(Σ χ^2));
g14=gtφ=-(( a (Δ-ж σ) Sin[θ]^2)/(Σ χ^2));
g12=g13=g23=g24=g34=0;

                                                                           (* Abkürzungen *)
Σ=r^2+a^2 Cos[θ]^2;
Δ=(r^2+a^2)(1-Λ/3 r^2)-2 M r+℧^2;
Χ=(r^2+a^2)^2-a^2 Sin[θ]^2 Δ;
щ=(q ℧ r (a^2+r^2))/(Δ Σ);
χ=1+Λ/3 a^2;
ж=1+Λ/3 a^2 Cos[θ]^2;
σ=a^2+r^2;

                           (* Dimensionen, elektrische Ladung, Spin, Vakuumenergie, Masse *)
x={t, r, θ, φ}; n=4; Ω=℧; ℧=℧; a=a; Λ=Λ; M=1;

                                                                         "Metrischer Tensor"
mt=smp[{
{g11, g12, g13, g14},
{g12, g22, g23, g24},
{g13, g23, g33, g34},
{g14, g24, g34, g44}
}];
Subscript["g", μσ] -> MatrixForm[mt]
it=smp[Inverse[mt]];
"g"^μσ -> MatrixForm[it]
mx=Table[smp[Sum[
it[[i, k]] mt[[k, j]], {k, 1, n}]],
{i, 1, n}, {j, 1, n}];
Subsuperscript["g", "μ", "σ"] -> MatrixForm[mx]
md=Det[mt]; "|g|" -> smp[md]

                                                       "Elektromagnetisches Vektorpotential"
A={Ω r/Σ/χ, 0, 0, -Ω r/Σ/χ Sin[θ]^2 a}; Subscript["A", μ]->smp[A]

                                                                            "Maxwell Tensor"
F=ParallelTable[smp[((D[A[[j]], x[[k]]]-D[A[[k]], x[[j]]]))], {j, 1, n}, {k, 1, n}];
Subscript["F", μσ] -> MatrixForm[F]
f=smp[ParallelTable[Sum[
it[[i, k]] it[[j, l]] F[[k, l]],
{k, 1, n}, {l, 1, n}], {i, 1, n}, {j, 1, n}]];
"F"^μσ -> MatrixForm[f]
џ=ParallelTable[smp[Sum[
it[[i, k]] F[[k, j]], {k, 1, n}]],
{i, 1, n}, {j, 1, n}];
Subsuperscript["F", "μ", "σ"] -> MatrixForm[џ]

                                                                        "Christoffelsymbole"
chr=ParallelTable[smp[(1/2)Sum[(it[[i, s]])
(D[mt[[s, j]], x[[k]]]+D[mt[[s, k]], x[[j]]] -D[mt[[j, k]], x[[s]]]), {s, 1, n}]],
{i, 1, n}, {j, 1, n}, {k, 1, n}];
crs=ParallelTable[If[UnsameQ[chr[[i, j, k]], 0],
{Subsuperscript["Γ", ToString[j] <> ToString[k], i] -> chr[[i, j, k]]}],
{i, 1, n}, {j, 1, n}, {k, 1, j}];
TableForm[DeleteCases[Flatten[crs], Null]]
                 
                                                                 "gemischter Riemann Tensor"
rmn=ParallelTable[smp[
D[chr[[i, j, l]], x[[k]]] - D[chr[[i, j, k]], x[[l]]] +
Sum[chr[[s, j, l]] chr[[i, k, s]] -
chr[[s, j, k]] chr[[i, l, s]],
{s, 1, n}]], {i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, n}];
rie=ParallelTable[If[UnsameQ[rmn[[i, j, k, l]], 0],
{Subsuperscript["R", ToString[j] <> ToString[k] <> ToString[l], i] -> rmn[[i, j, k, l]]}],
{i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, k - 1}];
TableForm[DeleteCases[Flatten[rie], Null]]
                                                            (* kovarianter Riemann Tensor *)
rcv=ParallelTable[Sum[mt[[i, j]] rmn[[j, k, l, m]], {j, 1, n}],
{i, 1, n}, {k, 1, n}, {l, 1, n}, {m, 1, n}];
                                                        (* kontravarianter Riemann Tensor *)
rcn=ParallelTable[Sum[it[[m, i]] it[[h, j]] it[[o, k]] it[[p, l]] rcv[[i, j, k, l]],
{i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, n}],
{m, 1, n}, {h, 1, n}, {o, 1, n}, {p, 1, n}];

                                                                              "Ricci Tensor"
rcc=ParallelTable[smp[
Sum[rmn[[i, j, i, l]], {i, 1, n}]], {j, 1, n}, {l, 1, n}];
Subscript["Ř", μσ] -> MatrixForm[rcc]
ric=ParallelTable[smp[Sum[
it[[i, k]] it[[j, l]] rcc[[k, l]], {k, 1, n}, {l, 1, n}]],
{i, 1, n}, {j, 1, n}];
"Ř"^μσ -> MatrixForm[ric]
rck=ParallelTable[smp[Sum[
it[[i, k]] rcc[[k, j]], {k, 1, n}]],
{i, 1, n}, {j, 1, n}];
Subsuperscript["Ř", "μ", "σ"] -> MatrixForm[rck]

                                                                              "Ricci Skalar"
Ř=smp[ParallelSum[it[[i, j]] rcc[[i, j]], {i, 1, n}, {j, 1, n}]]; "Ř"->Ř

                                                                        "Kretschmann Skalar"
krn= smp[ParallelSum[rcv[[i, j, k, l]] rcn[[i, j, k, l]],
{i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, n}]];
"K"->krn

                                                                               "Weyl Tensor"
weyl1=smp[ParallelTable[
 rcv[[i, j, k, l]] -
(rcc[[i, k]] mt[[j, l]] -
 rcc[[i, l]] mt[[j, k]] +
 rcc[[j, l]] mt[[i, k]] -
 rcc[[j, k]] mt[[i, l]])/2 +
(mt[[i, k]] mt[[j, l]] -
 mt[[i, l]] mt[[j, k]])/6 Ř,
{i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, n}]];
Weyl1=ParallelTable[If[UnsameQ[weyl1[[i, j, k, l]], 0],
{Subscript["W",
ToString[i] <> ToString[j] <> ToString[k] <> ToString[l]] -> weyl1[[i, j, k, l]]}],
{i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, n}];
weyl2=smp[ParallelTable[
Sum[it[[m, i]] it[[h, j]] it[[o, k]] it[[p, l]] weyl1[[i, j, k, l]],
{i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, n}],
{m, 1, n}, {h, 1, n}, {o, 1, n}, {p, 1, n}]];
Weyl2=ParallelTable[If[UnsameQ[weyl2[[i, j, k, l]], 0],
{"W"^(ToString[i] <> ToString[j] <> ToString[k] <> ToString[l]) -> weyl2[[i, j, k, l]]}],
{i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, n}];
weyl3=ParallelTable[smp[Sum[
it[[i, m]] weyl1[[m, j, k, l]], {m, 1, n}]],
{i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, n}];
Weyl3=ParallelTable[If[UnsameQ[weyl3[[i, j, k, l]], 0],
{Subsuperscript["W", ToString[j] <> ToString[k] <> ToString[l], ToString[i]] ->
weyl3[[i, j, k, l]]}],
{i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, n}];
TableForm[DeleteCases[Flatten[Weyl3], Null]]

                                                                 "kontrahierter Weyl Tensor"
weyl4=ParallelTable[smp[
Sum[weyl3[[i, j, i, l]], {i, 1, n}]], {j, 1, n}, {l, 1, n}];
Subscript["Ŵ", μσ] -> MatrixForm[weyl4]
weyl5=ParallelTable[smp[Sum[
it[[i, k]] it[[j, l]] weyl4[[k, l]], {k, 1, n}, {l, 1, n}]],
{i, 1, n}, {j, 1, n}];
"Ŵ"^μσ -> MatrixForm[weyl5]
weyl6=ParallelTable[smp[Sum[
it[[i, k]] weyl4[[k, j]], {k, 1, n}]],
{i, 1, n}, {j, 1, n}];
Subsuperscript["Ŵ", "μ", "σ"] -> MatrixForm[weyl6]

                                                                               "Weyl Skalar"
Ŵ=smp[ParallelSum[it[[i, j]] rcc[[i, j]], {i, 1, n}, {j, 1, n}]]; "Ŵ"->Ŵ

                                                                           "Einstein Tensor"
est=smp[rcc-Ř mt/2];
Subscript["G", μσ] -> MatrixForm[est]
ein=ParallelTable[smp[Sum[
it[[i, k]] it[[j, l]] est[[k, l]], {k, 1, n}, {l, 1, n}]],
{i, 1, n}, {j, 1, n}];
"G"^μσ -> MatrixForm[ein]
esm=ParallelTable[smp[Sum[
it[[i, k]] est[[k, j]], {k, 1, n}]],
{i, 1, n}, {j, 1, n}];
Subsuperscript["G", "μ", "σ"] -> MatrixForm[esm]

                                                              "Stress Energie Impuls Tensor"
set=smp[(est (* -Λ mt *) )/8/π];                                                 
Subscript["T", μσ] -> MatrixForm[set]
sei=ParallelTable[smp[Sum[
it[[i, k]] it[[j, l]] set[[k, l]], {k, 1, n}, {l, 1, n}]],
{i, 1, n}, {j, 1, n}];
"T"^μσ -> MatrixForm[sei]
sem=ParallelTable[smp[Sum[
it[[i, k]] set[[k, j]], {k, 1, n}]],
{i, 1, n}, {j, 1, n}];
Subsuperscript["T", "μ", "σ"] -> MatrixForm[sem]
Ť = smp[Sum[it[[i, j]] set[[i, j]], {i, 1, n}, {j, 1, n}]]; "T" -> Ť

                                                                      "Bewegungsgleichungen"
geo=ParallelTable[smp[-Sum[
chr[[i, j, k]] x[[j]]' x[[k]]'+q f[[i, k]] x[[j]]' mt[[j, k]],
{j, 1, n}, {k, 1, n}]], {i, 1, n}];

equ=ParallelTable[{x[[i]]''[τ]==smp[rplc[geo[[i]]]]}, {i, 1, n}];

geodesic1=equ[[1]][[1]]
geodesic2=equ[[2]][[1]]
geodesic3=equ[[3]][[1]]
geodesic4=equ[[4]][[1]]

                                                                     "totale Zeitdilatation"
zd=Sum[mt[[μ, ν]] x[[μ]]' x[[ν]]', {μ, 1, n}, {ν, 1, n}];                       
ṫ=Quiet[rplc[smp[Normal[Solve[
-μ==(zd/.t'->ť), ť]]]]];
Derivative[1][s][τ]^2 == "ds²/dτ² == -μ" == smp[rplc[zd]]                     
Derivative[1][t][τ]->ṫ[[1, 1, 2]]||ṫ[[2, 1, 2]]||rplc[Sqrt[it[[1, 1]]]]/Sqrt[1-μ^2 v[τ]^2]

                                                                  "kovarianter Viererimpuls"
p[μ_]:=-(Sum[mt[[μ, ν]]*x[[ν]]', {ν, 1, n}]+q A[[μ]]);
pt[τ]->rplc[smp[p[1]]]
pr[τ]->rplc[smp[p[2]]]
pθ[τ]->rplc[smp[p[3]]]
pφ[τ]->rplc[smp[p[4]]]

                                                                       "linearer 3er-Impuls"
ṕ[i_]:=rplc[smp[Sqrt[-Sum[mt[[i, k]] x[[i]]' x[[k]]',
{k, 1, n}]]]]-Sqrt[1-μ^2 v[τ]^2] q A[[i]];
ṕr[τ]->ṕ[2]
ṕθ[τ]->ṕ[3]
ṕφ[τ]->ṕ[4]

                                                                    "lokale Geschwindigkeit"
V[x_]:=smp[Normal[Solve[vx Sqrt[-mt[[x, x]]]/Sqrt[1-μ^2 v[τ]^2]-(1-μ^2 v[τ]^2) q A[[x]]==
p[x], vx]][[1, 1]]];
rplc[V[2]]/.vx->vr[τ]
rplc[V[3]]/.vx->vθ[τ]
rplc[V[4]]/.vx->vφ[τ]











Code: Alles auswählen

(* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *)
(*  Mathematica Syntax | EINSTEIN-MAXWELL TENSOR+GEODESIC SOLVER | geodesics.yukterez.net *)
(* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *)

ClearAll["Local`*"]; LaunchKernels[4];
smp[y_]:=Simplify[y,
X\[Element]Reals&&Y\[Element]Reals&&Z\[Element]Reals&&a\[Element]Reals];
list[y_]:=y[[1]]==y[[2]];
rplc[y_]:=(((((((y/.t->t[τ])/.X->X[τ])/.Y->Y[τ])/.Z->Z[τ])/.Derivative[1][t[τ]]->
t'[τ])/.Derivative[1][X[τ]]->X'[τ])/.Derivative[1][Y[τ]]->Y'[τ])/.Derivative[1][Z[τ]]->Z'[τ]

                                                      (* kovariante metrische Komponenten *)
g11=gtt=(a^2 Z^2+r^2 (-2 M r+r^2+℧^2))/(r^4+a^2 Z^2);
g22=gXX=-((a^4 r^4+2 a^2 r^6+r^8+2 M r^5 X^2+4 a M r^4 X Y+2 a^2 M r^3 Y^2+a^6 Z^2+
2 a^4 r^2 Z^2+a^2 r^4 Z^2-r^2 (r X+a Y)^2 ℧^2)/((a^2+r^2)^2 (r^4+a^2 Z^2)));
g33=gYY=-((a^4 r^4+2 a^2 r^6+r^8+2 a^2 M r^3 X^2-4 a M r^4 X Y+2 M r^5 Y^2+a^6 Z^2+
2 a^4 r^2 Z^2+a^2 r^4 Z^2-r^2 (a X-r Y)^2 ℧^2)/((a^2+r^2)^2 (r^4+a^2 Z^2)));
g44=gZZ=-((r^4+2 M r Z^2+Z^2 (a-℧) (a+℧))/(r^4+a^2 Z^2));
g12=gtX=-((r^2 (r X+a Y) (2 M r-℧^2))/((a^2+r^2) (r^4+a^2 Z^2)));
g13=gtY=(r^2 (a X-r Y) (2 M r-℧^2))/((a^2+r^2) (r^4+a^2 Z^2));
g14=gtZ=(r Z (-2 M r+℧^2))/(r^4+a^2 Z^2);
g23=gXY=(r^2 (r X+a Y) (a X-r Y) (2 M r-℧^2))/((a^2+r^2)^2 (r^4+a^2 Z^2));
g24=gXZ=-((r (r X+a Y) Z (2 M r-℧^2))/((a^2+r^2) (r^4+a^2 Z^2)));
g34=gYZ=(r (a X-r Y) Z (2 M r-℧^2))/((a^2+r^2) (r^4+a^2 Z^2));

                           (* Dimensionen, elektrische Ladung, Spin, Vakuumenergie, Masse *)
x={t, X, Y, Z}; n=4; Ω=℧; ℧=0; a=0; Λ=0; M=0;

                                                                         "Metrischer Tensor"
mt=smp[{
{g11, g12, g13, g14},
{g12, g22, g23, g24},
{g13, g23, g33, g34},
{g14, g24, g34, g44}
}];
Subscript["g", μσ] -> MatrixForm[mt]
it=smp[Inverse[mt]];
"g"^μσ -> MatrixForm[it]
mx=Table[smp[Sum[
it[[i, k]] mt[[k, j]], {k, 1, n}]],
{i, 1, n}, {j, 1, n}];
Subsuperscript["g", "μ", "σ"] -> MatrixForm[mx]
md=Det[mt]; "|g|" -> smp[md]

                                                                  "r als Funktion von X,Y,Z"
r=smp[Sqrt[-a^2+X^2+Y^2+Z^2+Sqrt[(a^2-X^2-Y^2-Z^2)^2+4 a^2 Z^2]]/Sqrt[2]]; "r"->r


                                                       "Elektromagnetisches Vektorpotential"
A=℧ r^3/(r^4+a^2+Z^2){1,(r X+a Y)/(r^2+a^2),(r Y-a Z)/(r^2+a^2),Z/r};
Subscript["A", μ]->smp[A]

                                                                            "Maxwell Tensor"
F=ParallelTable[smp[((D[A[[j]], x[[k]]]-D[A[[k]], x[[j]]]))], {j, 1, n}, {k, 1, n}];
Subscript["F", μσ] -> MatrixForm[F]
f=smp[ParallelTable[Sum[
it[[i, k]] it[[j, l]] F[[k, l]],
{k, 1, n}, {l, 1, n}], {i, 1, n}, {j, 1, n}]];
"F"^μσ -> MatrixForm[f]
џ=ParallelTable[smp[Sum[
it[[i, k]] F[[k, j]], {k, 1, n}]],
{i, 1, n}, {j, 1, n}];
Subsuperscript["F", "μ", "σ"] -> MatrixForm[џ]

                                                                        "Christoffelsymbole"
chr=ParallelTable[smp[(1/2)Sum[(it[[i, s]])
(D[mt[[s, j]], x[[k]]]+D[mt[[s, k]], x[[j]]] -D[mt[[j, k]], x[[s]]]), {s, 1, n}]],
{i, 1, n}, {j, 1, n}, {k, 1, n}];
crs=ParallelTable[If[UnsameQ[chr[[i, j, k]], 0],
{Subsuperscript["Γ", ToString[j] <> ToString[k], i] -> chr[[i, j, k]]}],
{i, 1, n}, {j, 1, n}, {k, 1, j}];
TableForm[DeleteCases[Flatten[crs], Null]]
                 
                                                                 "gemischter Riemann Tensor"
rmn=ParallelTable[smp[
D[chr[[i, j, l]], x[[k]]] - D[chr[[i, j, k]], x[[l]]] +
Sum[chr[[s, j, l]] chr[[i, k, s]] -
chr[[s, j, k]] chr[[i, l, s]],
{s, 1, n}]], {i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, n}];
rie=ParallelTable[If[UnsameQ[rmn[[i, j, k, l]], 0],
{Subsuperscript["R", ToString[j] <> ToString[k] <> ToString[l], i] -> rmn[[i, j, k, l]]}],
{i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, k - 1}];
TableForm[DeleteCases[Flatten[rie], Null]]
                                                            (* kovarianter Riemann Tensor *)
rcv=ParallelTable[Sum[mt[[i, j]] rmn[[j, k, l, m]], {j, 1, n}],
{i, 1, n}, {k, 1, n}, {l, 1, n}, {m, 1, n}];
                                                        (* kontravarianter Riemann Tensor *)
rcn=ParallelTable[Sum[it[[m, i]] it[[h, j]] it[[o, k]] it[[p, l]] rcv[[i, j, k, l]],
{i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, n}],
{m, 1, n}, {h, 1, n}, {o, 1, n}, {p, 1, n}];

                                                                              "Ricci Tensor"
rcc=ParallelTable[smp[
Sum[rmn[[i, j, i, l]], {i, 1, n}]], {j, 1, n}, {l, 1, n}];
Subscript["Ř", μσ] -> MatrixForm[rcc]
ric=ParallelTable[smp[Sum[
it[[i, k]] it[[j, l]] rcc[[k, l]], {k, 1, n}, {l, 1, n}]],
{i, 1, n}, {j, 1, n}];
"Ř"^μσ -> MatrixForm[ric]
rck=ParallelTable[smp[Sum[
it[[i, k]] rcc[[k, j]], {k, 1, n}]],
{i, 1, n}, {j, 1, n}];
Subsuperscript["Ř", "μ", "σ"] -> MatrixForm[rck]

                                                                              "Ricci Skalar"
Ř=smp[ParallelSum[it[[i, j]] rcc[[i, j]], {i, 1, n}, {j, 1, n}]]; "Ř"->Ř

                                                                        "Kretschmann Skalar"
krn= smp[ParallelSum[rcv[[i, j, k, l]] rcn[[i, j, k, l]],
{i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, n}]];
"K"->krn

                                                                               "Weyl Tensor"
weyl1=smp[ParallelTable[
 rcv[[i, j, k, l]] -
(rcc[[i, k]] mt[[j, l]] -
 rcc[[i, l]] mt[[j, k]] +
 rcc[[j, l]] mt[[i, k]] -
 rcc[[j, k]] mt[[i, l]])/2 +
(mt[[i, k]] mt[[j, l]] -
 mt[[i, l]] mt[[j, k]])/6 Ř,
{i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, n}]];
Weyl1=ParallelTable[If[UnsameQ[weyl1[[i, j, k, l]], 0],
{Subscript["W",
ToString[i] <> ToString[j] <> ToString[k] <> ToString[l]] -> weyl1[[i, j, k, l]]}],
{i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, n}];
weyl2=smp[ParallelTable[
Sum[it[[m, i]] it[[h, j]] it[[o, k]] it[[p, l]] weyl1[[i, j, k, l]],
{i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, n}],
{m, 1, n}, {h, 1, n}, {o, 1, n}, {p, 1, n}]];
Weyl2=ParallelTable[If[UnsameQ[weyl2[[i, j, k, l]], 0],
{"W"^(ToString[i] <> ToString[j] <> ToString[k] <> ToString[l]) -> weyl2[[i, j, k, l]]}],
{i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, n}];
weyl3=ParallelTable[smp[Sum[
it[[i, m]] weyl1[[m, j, k, l]], {m, 1, n}]],
{i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, n}];
Weyl3=ParallelTable[If[UnsameQ[weyl3[[i, j, k, l]], 0],
{Subsuperscript["W", ToString[j] <> ToString[k] <> ToString[l], ToString[i]] ->
weyl3[[i, j, k, l]]}],
{i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, n}];
TableForm[DeleteCases[Flatten[Weyl3], Null]]

                                                                 "kontrahierter Weyl Tensor"
weyl4=ParallelTable[smp[
Sum[weyl3[[i, j, i, l]], {i, 1, n}]], {j, 1, n}, {l, 1, n}];
Subscript["Ŵ", μσ] -> MatrixForm[weyl4]
weyl5=ParallelTable[smp[Sum[
it[[i, k]] it[[j, l]] weyl4[[k, l]], {k, 1, n}, {l, 1, n}]],
{i, 1, n}, {j, 1, n}];
"Ŵ"^μσ -> MatrixForm[weyl5]
weyl6=ParallelTable[smp[Sum[
it[[i, k]] weyl4[[k, j]], {k, 1, n}]],
{i, 1, n}, {j, 1, n}];
Subsuperscript["Ŵ", "μ", "σ"] -> MatrixForm[weyl6]

                                                                               "Weyl Skalar"
Ŵ=smp[ParallelSum[it[[i, j]] rcc[[i, j]], {i, 1, n}, {j, 1, n}]]; "Ŵ"->Ŵ

                                                                           "Einstein Tensor"
est=smp[rcc-Ř mt/2];
Subscript["G", μσ] -> MatrixForm[est]
ein=ParallelTable[smp[Sum[
it[[i, k]] it[[j, l]] est[[k, l]], {k, 1, n}, {l, 1, n}]],
{i, 1, n}, {j, 1, n}];
"G"^μσ -> MatrixForm[ein]
esm=ParallelTable[smp[Sum[
it[[i, k]] est[[k, j]], {k, 1, n}]],
{i, 1, n}, {j, 1, n}];
Subsuperscript["G", "μ", "σ"] -> MatrixForm[esm]

                                                              "Stress Energie Impuls Tensor"
set=smp[(est (* -Λ mt *) )/8/π];                                                   
Subscript["T", μσ] -> MatrixForm[set]
sei=ParallelTable[smp[Sum[
it[[i, k]] it[[j, l]] set[[k, l]], {k, 1, n}, {l, 1, n}]],
{i, 1, n}, {j, 1, n}];
"T"^μσ -> MatrixForm[sei]
sem=ParallelTable[smp[Sum[
it[[i, k]] set[[k, j]], {k, 1, n}]],
{i, 1, n}, {j, 1, n}];
Subsuperscript["T", "μ", "σ"] -> MatrixForm[sem]
Ť = smp[Sum[it[[i, j]] set[[i, j]], {i, 1, n}, {j, 1, n}]]; "T" -> Ť

                                                                      "Bewegungsgleichungen"
geo=ParallelTable[smp[-Sum[
chr[[i, j, k]] x[[j]]' x[[k]]'+q f[[i, k]] x[[j]]' mt[[j, k]],
{j, 1, n}, {k, 1, n}]], {i, 1, n}];

equ=ParallelTable[{x[[i]]''[τ]==smp[rplc[geo[[i]]]]}, {i, 1, n}];

geodesic1=equ[[1]][[1]]
geodesic2=equ[[2]][[1]]
geodesic3=equ[[3]][[1]]
geodesic4=equ[[4]][[1]]

                                                                     "totale Zeitdilatation"
zd=Sum[mt[[μ, ν]] x[[μ]]' x[[ν]]', {μ, 1, n}, {ν, 1, n}];                       
ṫ=Quiet[rplc[smp[Normal[Solve[
-μ==(zd/.t'->ť), ť]]]]];
Derivative[1][s][τ]^2 == "ds²/dτ² == -μ" == smp[rplc[zd]]                     
Derivative[1][t][τ]->ṫ[[1, 1, 2]]||ṫ[[2, 1, 2]]||rplc[Sqrt[it[[1, 1]]]]/Sqrt[1-μ^2 v[τ]^2]

                                                                  "kovarianter Viererimpuls"
p[μ_]:=-(Sum[mt[[μ, ν]]*x[[ν]]', {ν, 1, n}]+q A[[μ]]);
pt[τ]->rplc[smp[p[1]]]
pX[τ]->rplc[smp[p[2]]]
pY[τ]->rplc[smp[p[3]]]
pZ[τ]->rplc[smp[p[4]]]

                                                                       "linearer 3er-Impuls"
ṕ[i_]:=rplc[smp[Sqrt[-Sum[mt[[i, k]] x[[i]]' x[[k]]',
{k, 1, n}]]]]-Sqrt[1-μ^2 v[τ]^2] q A[[i]];
ṕX[τ]->ṕ[2]
ṕY[τ]->ṕ[3]
ṕZ[τ]->ṕ[4]

                                                                    "lokale Geschwindigkeit"
V[x_]:=smp[Normal[Solve[vx Sqrt[-mt[[x, x]]]/Sqrt[1-μ^2 v[τ]^2]-(1-μ^2 v[τ]^2) q A[[x]]==
p[x], vx]][[1, 1]]]; ν[i_]:=rplc[smp[Sqrt[-Sum[mt[[i, k]] x[[i]]' x[[k]]', {k, 1, n}]]]]/γ;
rplc[V[2]]/.vx->vX[τ]
rplc[V[3]]/.vx->vY[τ]
rplc[V[4]]/.vx->vZ[τ]











BildThe upper solver is by default set to the KNdS-metric in {t,r,θ,φ}-BL-coordinates. With Λ=0 the metric reduces to Kerr Newman, with Λ=℧=0 to Kerr, with Λ=a=0 to Reissner Nordström, with Λ=℧=a=0 to Schwarzschild, with ℧=a=0 to Schwarzschild De Sitter, with ℧=a=M=0 to De Sitter and with Λ=℧=a=M=0 to Minkowski. The lower solver is set to Kerr Newman in cartesian coordinates (since the metric is more complicated this way that needs takes more time to solve). If the line element is given in a cumbersome form the metric coefficients can be extracted with the line element decomposer.
Bild

● Examples of various metrics in different coordinates:

Bild
BildBoyer Lindquist is the rotating equivalent to Droste (time coordinate of a field free and stationary observer), Kerr-Schild to Finkelstein (the time coordinate will be stamped by infalling light rays) and Doran to Raindrop coordinates (the proper time of free falling clocks stamp the coordinate time). In the equations of motion the coordinates become functions of the proper time, or in case of photons of the affine parameter (t→t[τ], r'→r'[τ], θ''→θ''[τ] etc). By default natural units with G=M=c=K=1 are used (lengths are given in GM/c², time in GM/c³, velocity in c, etc). The cosmological constant in our universe has the value Λ=1.1056e-52/m², where the vacuum density is ρΛ=c²Λ/(8πG). In the context of a black hole with M=1e40kg, the cosmological constant in natural units would be Λ→G²M²Λ/c⁴=6.0963e-87.
Bild

● Coordinate transformator:
Bild

Code: Alles auswählen

(* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *)
(* ||||| KOORDINATEN TRANSFORMATOR | geodesics.yukterez.net | Droste -> Finkelstein ||||| *)
(* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *)

d1={dt, dr, dθ, dφ};
d2={dT, dr, dθ, dφ};
n=4;

"Schwarzschild, Droste"

g11=gtt=1-2M/r;
g22=grr=-1/gtt;
g33=gθθ=-r^2;
g44=gφφ=-r^2 Sin[θ]^2;
g12=g13=g14=g23=g24=g34=0;

m1={
{g11, g12, g13, g14},
{g12, g22, g23, g24},
{g13, g23, g33, g34},
{g14, g24, g34, g44}};

A1={0, 0, 0, 0};
Subscript["A", μ] -> A1

M1=MatrixForm[m1];
Subscript["g", μσ] -> M1

"Schwarzschild, Finkelstein"

v=-2M/r;
dt=dT+v/gtt dr ;

m2=FullSimplify[Table[Sum[D[d1[[k]], d2[[i]]] D[d1[[s]], d2[[j]]] m1[[k, s]],
{k, 1, n}, {s, 1, n}], {i, 1, n}, {j, 1, n}]];
M2=MatrixForm[m2];
Subscript["g", μσ] -> M2

A2=FullSimplify[Table[Sum[D[d1[[k]], d2[[i]]] A1[[k]],
{k, 1, n}], {i, 1, n}]];
Subscript["A", μ] -> A2








Quit[]








(* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *)
(* |||| KOORDINATEN TRANSFORMATOR | geodesics.yukterez.net | Sphärisch -> Kartesisch |||| *)
(* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *)

d1={dt, dr, dθ, dΦ};
d2={dt, dX, dY, dZ};
n=4;

"Schwarzschild, Droste, Sphärisch"

g11=gtt=1-2/r;
g22=gXX=-1/g11;
g33=gYY=-r^2;
g44=gZZ=-r^2 Sin[θ]^2;
g12=gtX=0;
g13=gtY=0;
g14=gtZ=0;
g23=gXY=0;
g24=gXZ=0;
g34=gYZ=0;

m1={
{g11, g12, g13, g14},
{g12, g22, g23, g24},
{g13, g23, g33, g34},
{g14, g24, g34, g44}};

M1=MatrixForm[m1];
Subscript["g", μσ] -> M1

A1={0, 0, 0, 0};
Subscript["A", μ] -> A1

"Schwarzschild, Droste, Kartesisch"

dr=(X dX+Y dY+Z dZ)/r;
dθ=(Z X dX+Z Y dY-(X^2+Y^2) dZ)/r^2/Sqrt[X^2+Y^2];
dΦ=(X dY-Y dX)/(X^2+Y^2);

r=Sqrt[X^2+Y^2+Z^2];
θ=ArcTan[Z, Sqrt[X^2+Y^2]];

m2=FullSimplify[Table[Sum[D[d1[[k]], d2[[i]]] D[d1[[s]], d2[[j]]] m1[[k, s]],
{k, 1, n}, {s, 1, n}], {i, 1, n}, {j, 1, n}]];
M2=MatrixForm[m2];
Subscript["g", μσ] -> M2

A2=FullSimplify[Table[Sum[D[d1[[k]], d2[[i]]] A1[[k]],
{k, 1, n}], {i, 1, n}]];
Subscript["A", μ] -> A2








Quit[]








(* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *)
(* || KOORDINATEN TRANSFORMATOR | geodesics.yukterez.net | Boyer Lindquist -> Raindrop || *)
(* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *)

d1={dt, dr, dθ, dΦ};
d2={dT, dr, dθ, dφ};
n=4;

"Kerr Newman, Boyer Lindquist"

g11=gtt=-(2r-r^2-℧^2-a^2+a^2 Sin[θ]^2)/(r^2+a^2 Cos[θ]^2);
g22=grr=-(r^2+a^2 Cos[θ]^2)/(a^2-2r+r^2+℧^2);
g33=gθθ=-r^2-a^2 Cos[θ]^2;
g44=gφφ=-((a^2+r^2)^2 Sin[θ]^2-a^2 (a^2-2r+r^2+℧^2) Sin[θ]^4)/(r^2+a^2 Cos[θ]^2);
g14=gtφ=-(a (℧^2-2r) Sin[θ]^2)/(r^2+a^2 Cos[θ]^2);
g12=g13=g23=g24=g34=0;

m1={
{g11, g12, g13, g14},
{g12, g22, g23, g24},
{g13, g23, g33, g34},
{g14, g24, g34, g44}};

M1=MatrixForm[m1];
Subscript["g", μσ] -> M1

A1={r ℧/(r^2+a^2 Cos[θ]^2), 0, 0, -a r ℧ Sin[θ]^2/(r^2+a^2 Cos[θ]^2)};
Subscript["A", μ] -> A1

"Kerr Newman, Raindrop"

σ=+a^2+r^2;
v=-Sqrt[2r-℧^2]/Sqrt[σ];
dt=+dT+v dr/(1-v^2);
dΦ=+dφ+a v dr/σ/(1-v^2);

m2=FullSimplify[Table[Sum[D[d1[[k]], d2[[i]]] D[d1[[s]], d2[[j]]] m1[[k, s]],
{k, 1, n}, {s, 1, n}], {i, 1, n}, {j, 1, n}]];
M2=MatrixForm[m2];
Subscript["g", μσ] -> M2

A2=FullSimplify[Table[Sum[D[d1[[k]], d2[[i]]] A1[[k]],
{k, 1, n}], {i, 1, n}]];
Subscript["A", μ] -> A2








BildTransformation from one coordinate system into an other. Input: covariant metric and transformation rule, Output: new covariant metric (for an example see below).
Bild

● Example for the coordinate transformation:
Bild
Bild
BildAbove: transformation rule, below: transformation
Bild
BildExample, Input: Schwarzschild metric in covariant Droste Bookkeeper coordinates (left) and the transformation rule dτ=dt-v·dr/gₜₜ, Output: Schwarzschild metric in covariant Gullstrand Painlevé (Raindrop) coordinates (right). For the backtransformation click on the image. Equivalent transformation for the Kerr Newman metric: click.
Bild

● Function plotter:
Bild

Code: Alles auswählen

(* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *)
(* | Mathematica Syntax | EINSTEIN PLOTTER | geodesics.yukterez.net | Version 10.1.2020 | *)
(* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| *)

(* Kartesisch zu Boyer Lindquist *)
k[x_, z_, a_]:=FindInstance[x==Sqrt[R^2+a^2]Sin[u]&&z==R Cos[u]&&u<2Pi&&u>=0&&R>=0, {R, u}, Reals]
r[x_, z_, a_]:=k[x, z, a][[1, 1, 2]];
θ[x_, z_, a_]:=k[x, z, a][[1, 2, 2]];

(* Kretschmann Skalar *)
K[x_, z_, a_, ℧_]:=-(1/((a^2+a^2 Cos[2 θ[x, z, a]]+2 r[x, z, a]^2)^6))32 (30 a^6-42 a^4 ℧^4+3 a^6 Cos[6 θ[x, z, a]]+360 a^4 ℧^2 r[x, z, a]-540 a^4 r[x, z, a]^2+272 a^2 ℧^4 r[x, z, a]^2-960 a^2 ℧^2 r[x, z, a]^3+720 a^2 r[x, z, a]^4-112 ℧^4 r[x, z, a]^4+192 ℧^2 r[x, z, a]^5-96 r[x, z, a]^6+2 a^4 Cos[4 θ[x, z, a]] (9 a^2-7 ℧^4+60 ℧^2 r[x, z, a]-90 r[x, z, a]^2)+a^2 Cos[2 θ[x, z, a]] (45 a^4+16 r[x, z, a]^2 (17 ℧^4-60 ℧^2 r[x, z, a]+45 r[x, z, a]^2)-8 a^2 (7 ℧^4-60 ℧^2 r[x, z, a]+90 r[x, z, a]^2)));

(* Horizonte und Ergosphären *)
rE=1+Sqrt[1-a^2 Cos[Θ]^2-a^2];(*äußere Ergosphäre*)
RE={Sqrt[rE^2+a^2] Sin[Θ], rE Cos[Θ]};
rG=1-Sqrt[1-a^2 Cos[Θ]^2-a^2];(*innere Ergosphäre*)
RG={Sqrt[rG^2+a^2] Sin[Θ], rG Cos[Θ]};
rA=1+Sqrt[1-a^2-a^2];(*äußerer Horizont*)
RA={Sqrt[rA^2+a^2] Sin[Θ], rA Cos[Θ]};
rI=1-Sqrt[1-a^2-a^2];(*innerer Horizont*)
RI={Sqrt[rI^2+a^2] Sin[Θ], rI Cos[Θ]};

(* Kartesischer Plot *)
℧=a;
Do[Print[Rasterize[Grid[{{
Show[
ContourPlot[K[x, z, a, ℧], {x, 0, 5}, {z, 0, 5}, PlotLegends->Automatic, Contours->20, ContourShading->Automatic, MaxRecursion->3, ImageSize->400],
ParametricPlot[{RI, RA, RG, RE}, {Θ, 0, Pi/2}, Frame->False]
]}, {"a"->N@a}, {"℧"->N@℧},
{"                                                                                  "}},
Alignment->Left]]],
{a, 0, Sqrt[1/2], Sqrt[1/2]/2}]








BildThe default setting of the plotter is a contur plot of the Kretschmann skalar for a Kerr Newman black hole. Other functions can be plugged in from the field equation solver, when projecting to the x,z-plane r,θ-coordinates must be written as explicit functions of x,z (r→r[x,z,a], θ→θ[x,z,a]).
Bild

● Example for the visualization:
Bild
Bild
BildIn this example the Kretschmann Skalar for a Kerr Newman BH is projected onto the x,z-plane at y=0 and overlayed with the horizons and ergospheres. The black lines mark surfaces of constant curvature; the clipped areas are marked white and have either strong positive or negative curvature. The bundled bold black lines separating the white areas mark the crossings between strong positive and negative curvature. For other spin/charge-combinations click on the image, for the animation click here.
Bild

● Equations and rules:
Bild

Field equation with respect to the covariant energy-momentum-tensor Tᵢⱼ (the gray part is not required since we treat Λ as vacuum energy density and add it to the other energy densities in the energy/momentum-tensor; if Λ is not treated as dark energy but classicaly like Einstein meant it in his so called biggest blunder, the term gets substracted as shown in gray if the signature is +---, while with -+++ it must be added in order for the cosmological constant to not show up as energy density in Tᵢⱼ):

Bild
Bild

Riemann tensor:

Bild

Ricci tensor:

Bild

Ricci scalar:

Bild

Kretschmann scalar:

Bild

Einstein tensor:

Bild

Kronecker delta:

Bild

Christoffel symbols of the 2nd kind:

Bild

Hamiltonian, for particles: μ=-1, for photons: μ=0:

Bild

Maxwell tensor and vector-potential A:

Bild
Bild

1st proper time derivatives and momentum:

Bild

Total time dilatation and local velocity:

Bild

Velocity of the local reference frames in the k-direction (relative to fixed coordinates):

Bild

2nd proper time derivatives of a free particle:

Bild

Proper acceleration (force) for a nongeodesic particle:

Bild

Parallel transport of a vector V:

Bild
Bild

Rule for raising and lowering the indices:

Bild

Multiple indices:

Bild

Contraction:

Bild

Mixed indices:

Bild
Bild

Transformation from one coordinate system x into an other one x̅:

Bild

Bild
Bild

In this article natural units are used. The overdot stands for differentiation by proper time τ: ẋ=dx/dτ
Bild

● Recommended tutorials:
Bild

images and animations by Simon Tyran, Vienna (Yukterez) - reuse permitted under the Creative Commons License CC BY-SA 4.0
Bild
by Simon Tyran, Vienna @ youtube || rumble || odysee || minds || wikipedia || stackexchange || License: CC-BY 4 ▣ If images don't load: [ctrl]+[F5]Bild

Zurück zu „Yukterez Notepad“

Wer ist online?

Mitglieder in diesem Forum: 0 Mitglieder und 2 Gäste